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Abstract

Gaussian spherical quadrature methods in the guise of the Lebedev sampling grids are highly efficient for some orientational
(‘‘powder’’) averaging problems in solid state NMR. However, their applicability is currently restricted, as the sets of orientations are
derived analytically and because they are not well adapted to simulate the broad peakshapes encountered, for example, in the NMR
on static powders or on half-integer quadrupolar spins subject to second order quadrupolar interactions under magic-angle spinning
conditions. We remedy these problems by (i) introducing the recursive procedure regularized octahedral symmetry expansion (ROSE),
to which any existing Lebedev set may be subjected. Each recursive step gives a 9-fold enlarged set of orientations. (ii) We demonstrate
that ROSE-expanded grids, in conjunction with spectral interpolation, is well suited for calculating broad peakshapes. These advances
combine into the apparently most efficient general-purpose two-angle orientational averaging technique proposed to date for solid state
NMR applications.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The concept of numerical integration enters in many
branches of Chemical Physics: for example, essentially all
solid state NMR experiments are nowadays carried out
on powders comprising a vast number of randomly orient-
ed micro-crystallites. In the analysis of experimental data,
it is crucial to be able to numerically calculate the NMR
response. It depends for each crystallite on the relative ori-
entation (X) between the spin interaction tensor and the
external magnetic field direction [1–18]. The net NMR time
signal of the powder, denoted hsðt; XÞiX � �sðtÞ, is calculated
as the average over all crystallite orientations X: the proce-
dure is usually termed ‘‘powder averaging’’ and is equiva-
lent to an integration over X.
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However, as the integration may in general not be per-
formed analytically, the orientational (powder) averaging

is traditionally carried out by sampling a set of NS crystal-
lite orientations fXS

j g and approximating the orientational
average as follows:

�sðtÞ � �sSðtÞ; ð1Þ
where the estimated average is calculated as a weighted sum
over the signals from all sampled orientations,

�sSðtÞ ¼
XNS

j¼1

wS
j sðt; XS

j Þ ð2Þ

with the weights wS
j normalized according toXNS

j¼1

wS
j ¼ 1: ð3Þ

Unfortunately, as the powdered sample typically comprises
107–108 crystallites and the calculation involving each
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crystallite is often time consuming, it is desirable to mini-
mize NS by a careful choice of the selected orientations
fXS

j g, while achieving the most accurate approximation
in Eq. (1). A large number of orientational sampling
schemes have been proposed for solving this task, most
of which aim at generating the most uniform distribution
of orientations [1–7,19–21]. So far, the most popular
approaches employed in solid state NMR apply this con-
cept: here we single out the ZCW technique of Zaremba,
Conroy, Wolfsberg and co-workers [19–21], the method
by Alderman, Solum and Grant (ASG) [1], and the
REPULSION scheme by Bak and Nielsen [7]. We refer
to the literature for detailed accounts of these methods.

A powerful integration technique, employed for instance
extensively in DFT calculations [22–27], is Gaussian spher-
ical quadrature (GSQ) [24,28–34], of which the most effi-
cient sampling schemes (henceforth labeled ‘‘LEB’’), are
those of Lebedev and co-workers [28–33]. Ref. [10] demon-
strated that the Lebedev schemes have decisive advantages
over other orientational averaging techniques for calcula-
tions of spinning sideband manifolds generated from com-
muting spin interactions [35], such as chemical shift
anisotropies, first-order quadrupolar interactions and het-
eronuclear dipolar-couplings [16,35] . As reviewed in Refs.
[10,11,15,18] only two orientational variables enter explicit-
ly the numerical integration in these cases, and the structur-
ally related information (coupling constants, asymmetry
parameters) is encoded in the width and shape of the side-
band manifold and accessible through numerical iterative
fitting incorporating orientational averaging. In general,
the larger the number of spinning sidebands present in
the spectrum, the larger the number of sampled orienta-
tions required to obtain sufficiently accurate sideband
amplitudes. The Lebedev schemes may often provide a
set of exact amplitudes using less than 100 sampled orien-
tations, thereby outperforming any other orientational
averaging method proposed to date [10]. This is partly
because they are well-adapted to handle the orientational
symmetry of many NMR problems [10,11,15,18].

However, the Lebedev schemes have primarily two
shortcomings: first, the sets of orientations are derived ana-
lytically, and despite that expanded sets are continuously
being presented [28–33], there are still classes of very chal-
lenging problems, such as the calculation of satellite-transi-
tion sideband manifolds of half-integer quadrupolar nuclei
subject to MAS [36], for which the largest existing Lebedev
sets are insufficient.

The Lebedev schemes have also a deficiency in that they
are not well adapted to simulate broad peakshapes [10], for
instance those obtained from static powders or from sec-
ond-order-broadened central-transition lineshapes of
quadrupolar spins undergoing MAS [16,36]. Here, a funda-
mental problem is the incompatibility of representing line-
shapes spanning large frequency-ranges by using a small set
of calculated frequencies and amplitudes. This problem is
shared by all orientational sampling schemes. However, it
may be remedied, thereby leading to significantly reduced
computational times, by using spectral interpolation tech-
niques, of which that of Alderman, Solum, and Grant in
conjunction with their orientational sampling scheme has
found most widespread use in solid state NMR [1]. An
extension of the interpolation procedure to simulations of
2D experiments was given in Ref. [9], and other methods
based on interpolation concepts have also been proposed
[2,5,37].

In this contribution, we remedy the two shortcomings of
the Lebedev schemes as follows: (i) we introduce a straight-
forward expansion protocol, termed regularized octahedral
symmetry expansion (ROSE), to which any existing Lebe-
dev set may be subjected. The outcome is an enlarged set of
orientations (by about a factor of 9) denoted ROSELEB. It
retains the symmetry of the input set and closely approxi-

mates the not yet existing ‘‘ideal’’ Lebedev version. The
new grids are well-adapted to handle very challenging
NMR simulations involving hundreds of spinning side-
bands. (ii) We demonstrate that both the LEB and
ROSELEB schemes are straightforward to incorporate into
the ASG interpolation protocol [1], thereby greatly extend-
ing their application areas. Further, we show that the
ROSELEB schemes in conjunction with ASG interpolation
provide slightly more accurate results than using the origi-
nal ASG orientations of Ref. [1].

The remainder of this article is organized as follows: the
next section introduces the basics of orientational averag-
ing, including the principles of GSQ and a brief review of
orientational symmetry in NMR [10,11,15,18]. The third
section introduces the ROSE protocol, which in the subse-
quent section is compared with existing state-of-the-art ori-
entational averaging methods for the calculation of
spinning sideband manifolds generated by a single spin-
3/2 subject to a MAS-modulated first order quadrupolar
interaction. Section 5 evaluates the performance of the
new interpolated sampling schemes in the context of simu-
lating central-transition lineshapes of a spin-3/2 broadened
by second order quadrupolar interactions. Our numerical
procedures are discussed in Section 6, and the last section
concludes.
2. Principles of orientational averaging

2.1. Orientational dependence of the NMR signal

The Hamiltonian of an anisotropic spin interaction K
may generally be expressed as a product of an orientation
dependent frequency xK (X) and a spin operator bT K:

bH K ¼ xKðXÞbT K: ð4Þ

In a sample comprising randomly oriented crystallites and
undergoing rotation around an axis subtending the ‘‘magic
angle’’ hm ¼ arctanf

ffiffiffi
2
p
g with respect to the external mag-

netic field direction, the frequency is both orientation and
time-dependent. For a single crystallite of the powder, it
may be expressed [15,16,18,38–42]:
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xKðt; XMRÞ ¼
X2

q¼�2

X2

q0 ;q00¼�2

½A2q00 �PD2
q00q0 ðXPMÞD2

q0qðXMRÞd2
q0ðhmÞ

� expfiqxrtg; ð5Þ

where xr is the spinning frequency and D2
qq0 ðXÞ and d2

qq0 ðbÞ
denote second rank Wigner functions and reduced Wigner
functions, respectively. They are related by

DJ
qq0 ða; b; cÞ ¼ expf�iðaqþ cq0ÞgdJ

qq0 ðbÞ ð6Þ

for an arbitrary rank J [43]. Here we assumed that the spin
interaction K is second rank with respect to rotations in
space and may consequently be expressed in its principal
axis system (PAS) as a set of five components [A2q]P, where
q takes integer values in the range �2 6 q 6 2 [15,16,18,38–
42,44]. The laboratory-frame frequency xK (t;XMR) is cal-
culated according to Eq. (5) as a series of rotations, where
each individual transformation between two coordinate
systems F and F

0
is parametrized by an Euler angle triplet

XFF0 ¼ faFF0 ; bFF0 ; cFF0 g [43]. The transformations involve
sequentially (i) the ‘‘molecular frame’’ (M), representing
an arbitrary coordinate system fixed at a crystal fragment,
(ii) a ‘‘rotor frame’’ (R) fixed on the sample holder and (iii)
the laboratory frame (L). Here the angles
XRL = {�xrt,hm, 0} are time-dependent, while the spatial
orientational dependence of a given crystallite is encoded
in XMR = {aMR,bMR,cMR}. Over the powder of randomly
oriented crystallites, XMR spans the entire range of values
{0 6 aMR < 2p, 0 6 bMR 6 p, 0 6 cMR < 2p}.

In the general case, the Hamiltonian is a sum over sev-
eral interactions Kj, each being associated with a certain
set of angles Xj

PM. However, if one is dealing with a single

interaction and identifies its PAS with the molecular frame,
Eq. (5) may be written

xKðt; XPRÞ ¼
X2

q¼�2

X2

q0¼�2

½A2q0 �PD2
q0qðXPRÞd2

q0ðhmÞ expfiqxrtg:

ð7Þ
In this case, the orientational dependence is encoded in
XPR. In the following, we use the shorthand notation
X ” XPR and X ” XMR, when dealing with one interaction
and several interactions, respectively. As explained in detail
in Ref. [18], the orientational dependence of the spin Ham-
iltonian translates into an orientation dependent NMR
time signal s (t,X), which upon Fourier transformation re-
sults in an NMR spectrum S (x,X). The latter is represent-
ed as a set of amplitudes ai at corresponding frequency
coordinates xi. In general, both the spectral amplitudes

and frequencies depend on orientation. This is the scenario
for NMR interactions in static (non-rotating) powders,
spin-pairs at rotational resonance or quadrupolar spins
subject to second order quadrupolar interactions both in
static and rotating samples [16,36,45,46].

However, MAS spin dynamics governed by a so-called
dynamically inhomogeneous Hamiltonian (implying that it
is self-commuting at all times) [35], leads to a spectrum
comprising a set of narrow ‘‘spinning sidebands,’’ posi-
tioned at the discrete and equally spaced frequencies
xðkÞj ¼ xð0Þj þ kxr [8,12,35,44,47,48]. Here xð0Þj ¼ xK

iso

denotes the isotropic (orientation independent) part of
the spatial tensor. In this case, the spectral amplitudes
aðkÞj ðXÞ depend on orientation, while the frequencies do
not. Examples of interactions giving dynamically inhomo-
geneous spin dynamics are chemical shift anisotropies, het-
eronuclear dipolar interactions and first order quadrupolar
interactions [35]. In practice, the width of a spinning side-
band is only limited by spin–spin relaxation (T2). However,
in the following, we ignore relaxation effects and treat each
sideband as an infinitely narrow ‘‘stick’’ with amplitude
aðkÞj ðXÞ and frequency xðkÞj ¼ kxr, i.e., we further assume
that xK

iso ¼ 0.

2.2. The orientational average

The calculation of the NMR time-domain signal or fre-
quency-domain spectrum from a powder of randomly ori-
ented crystallites may be performed by integrating the
orientational variable over its full range of definition,
V(3) = {0 6 a < 2p, 0 6 b 6 p, 0 6 c < 2p}:

�f ¼Nð3Þ
Z

V ð3Þ
f ðXÞdX; ð8Þ

where �f is the orientational (powder) average, and the nor-
malization constant Nð3Þ is equal to the reciprocal integra-
tion volume (8p2)�1. In NMR, we identify f (X) with either
s (t,X) or S (x,X).

2.3. Orientational symmetry

As discussed in detail in Refs. [8–12,15,18], for simula-
tions of spin systems not subject to radio frequency (rf)
pulses during the NMR signal acquisition and being asso-
ciated with an initial density operator not depending on
orientation at the start of acquisition [bqðt ¼ 0Þ], the inte-
gration (average) over c may be handled separately. Then
the orientational averaging reduces to an integration over
only a and b:

�f ¼Nð2Þ
Z

V ð2Þ
f ða; bÞda sin bdb ð9Þ

with

V ð2Þ ¼ f0 6 a < 2p; 0 6 b 6 pg;
Nð2Þ ¼ ð4pÞ�1

:
ð10Þ

Note that V(2) represents the unit sphere surface if we iden-
tify {a,b} with the polar angles {h,/} according to a ” /
and b ” h [43].

However, for these restricted NMR problems, the inte-
gration range [Eq. (10)] may always be reduced further
due to additional symmetries of f (a,b). Refs. [10,11,15,18]
provide thorough discussions; we simply note that in the
most general case of several interactions with non-coincid-
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ing principal axis systems, the relevant integration range
V(2) is essentially corresponding to a hemisphere,

V ð2Þ ¼ f0 6 a < 2p; 0 6 b < p=2g [ f0 6 a < p; b ¼ p=2g;
Nð2Þ ¼ ð2pÞ�1

;

ð11Þ
where [ represents the union symbol. In the case of a single

interaction, V(2) reduces to an octant:

V ð2Þ ¼ f0 6 a 6 p=2; 0 6 b 6 p=2g;
Nð2Þ ¼ ðp=2Þ�1

:
ð12Þ

Finally, in the case of a single interaction associated with
an axially symmetric tensor, f (a,b) has no dependence on
a, allowing integration over a one-dimensional spherical
arc:

V ð1Þ ¼ f0 6 b 6 p=2g;
Nð1Þ ¼ 1:

ð13Þ

Note that a prerequisite for using Eqs. (12) and (13) is that
the ‘‘molecular frame’’ is coincident with the PAS of the
tensor, i.e., XPM = {0, 0,0}. Then the relevant orientational
variable is X ” XPR as in Eq. (7).

2.4. Gaussian spherical quadrature

2.4.1. General principles

Assume that a function f (X) = f (a,b,c) is expanded in a
series of orthogonal Wigner functions [Eq. (6)]. Provided
that the prerequisites leading to Eqs. (9) and (10) are ful-
filled, f (X) only depends on two variables, f (X) = f (a,b),
and may consequently be expanded as

f ða; bÞ ¼
X1
J¼0

XJ

q¼�J

fJqDJ
q0ða; bÞ: ð14Þ

An efficient, stable and accurate approach to evaluating
Wigner functions for large J is outlined in Appendix A.
In the most general case when f (a,b,c) depends on all three
Euler angles X = {a,b,c}, the expansion coefficients as well
as the Wigner functions have two independent indices q

and q 0 [10]. In order to better bring out the analogy with
this scenario, we employ the notation DJ

q0ða; bÞ, but note
that DJ

q0ða; bÞ is directly related to the spherical harmonic
YJq (b,a) ” YJq (h,/) [43]. We next assume that the expan-
sion [Eq. (14)] is convergent and generally that
jfJ1qj � jfJ2qj for J2� J1, i.e., that the coefficients fJq asso-
ciated with low J are dominating those of high J. Further,
we assume that the series is ‘‘exact’’ when truncated at
J ¼ J f

max.
The orientational average of f (a,b) may be expressed [10]

�f ¼Nð2Þ
Z

V ð2Þ
f ða; bÞda sin bdb ð15Þ

¼Nð2Þ
XJf

max

J¼0

XJ

q¼�J

fJq

Z
V ð2Þ

DJ
q0ða; bÞda sin bdb; ð16Þ
with Nð2Þ and V(2) given by Eqs. (10). Due to the following
property of the Wigner functions [43],Z

V ð2Þ
DJ

q0ða; bÞda sin bdb ¼ 4pdJ ;0dq;0 ð17Þ

all terms in Eq. (16) vanish, except that associated with
J = 0. Here dx,y denotes the Kronecker delta function.
Eq. (16) now reduces to [10]

�f ¼ f00 ð18Þ
implying that the orientational average of f (a,b) is equal to
the expansion coefficient f00 in Eq. (14).

The integration technique Gaussian spherical quadra-
ture (GSQ) [24,28–34] aims at selecting orientations and
weights such that the set S ¼ faS

j ; b
S
j ;w

S
j g integrates all

ðJ S
max þ 1Þ2 Wigner functions DJ

q0ða; bÞ with J 6 J S
max exact-

ly, where J S
max is characteristic of S [10]. The integration of

f (a,b) is then exact provided that J S
max P J f

max. Typically, a
GSQ set with high J S

max is significantly larger than a set with
low J S

max. In general, the number of orientations NS grows
linearly with J S

max as well as with the number of indepen-
dent integration variables, i.e., � ðJ S

maxÞ
2 orientations are

required to integrate all DJ
q0ða; bÞ functions for J 6 J S

max.
Note that a function f (a,b) associated with a high J f

max is
‘‘difficult’’ to integrate and requires a large set S. GSQ
techniques are therefore most efficient for integrating func-
tions with relatively low J f

max, in practice J S
max K 100. It has

been demonstrated that the prerequisites for successful
implementation of GSQ techniques are fulfilled for many
NMR problems and further that GSQ is the only technique
capable of providing exact powder averages using a finite

set of orientations [10].
The orientational averaging grids of Lebedev and

co-workers [28–33] are the most efficient GSQ schemes
known to date. They have the following approximate
relationship between J S

max and the number of orientations:

NS
LEB � 1

3
ðJ S

max þ 1Þ2: ð19Þ

The so far largest reported Lebedev set is associated with
Jmax = 131 and comprises 5810 orientations [33].

2.4.2. Sampling moments and rank profiles

As an assessment of the orientational averaging perfor-
mance of a set comprising NS orientations and weights
faS

j ; b
S
j ;w

S
j g, it is convenient to introduce a sampling

moment [10]

rS
Jq ¼

XNS

j¼1

wS
j DJ

q0ðaS
j ; b

S
j Þ; ð20Þ

whereupon Eq. (16) is approximated according to

�f � �f S ¼
XJf

max

J¼0

XJ

q¼�J

fJqr
S
Jq: ð21Þ

If Eq. (3) is obeyed, rS
00 ¼ 1. For simplicity, we onwards

calculate the root-mean square (rms) sampling moment,
defined as [10]
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rS
J ¼ ð2J þ 1Þ�1

XJ

q¼�J

jrS
Jqj

 !1
2

: ð22Þ

Hence, a sampling scheme arranging that rS
J ¼ 0 for all J

associated with finite expansion coefficients fJq in Eq. (14)
gives an exact orientational average, �f S ¼ �f . Finite values
of rS

Jq for J 6 J f
max introduces integration errors, but if

the coefficients fJq fall off rapidly when J increases, a
‘‘good’’ orientational averaging scheme arranges rS

J � 0
for all J 6 J f

max, and thereby a sufficiently accurate estimate
of �f .

If the function has one of the orientational symmetries
discussed in the previous section, some of the expansion
coefficients fJq are zero. Provided that the scheme samples
orientations under the given symmetry, a straightforward
reduction of the grid-size is then possible. For example, if
the function f (a,b) has inversion symmetry, all coefficients
fJq for odd J are zero [10], which allows integration over the
hemispheric range defined in Eq. (11). If the sampling
scheme generates orientations under inversion symmetry,
NS can be reduced by a factor of 2. As the computational
time grows linearly with the number of sampled orienta-
tions, it follows that hemispheric and octant sets leads ide-
ally to two and eight times faster calculations. This applies,
for example, to both the Lebedev and ASG schemes as they
are implemented under octahedral symmetry. The ZCW
sets, however, lacks inversion symmetry; while they may

easily be generated over a hemisphere or octant, these
reduced sets do not necessarily give more accurate orienta-
tional averages than their full-sphere versions [10].

In the following, we label schemes sampled over a hemi-
sphere or an octant by appending the letters ‘‘h’’ and ‘‘o,’’
respectively, to the parent scheme label. For example, the
complete Lebedev set with Jmax = 101 comprises 3470 ori-
Fig. 1. Rms sampling moments rJ plotted for even ranks J using the set of ori
ASGh (D–F), LEBh (G and H), and ROSELEBh (I). The rms sampling momen
the rank profiles on a magnified vertical scale, by a factor of 100 (C), 1000 (F),
reduced sampling moments (for J [ 300) of the ROSELEBh set relative to tho
entations and is denoted LEB3470, whereas the corre-
sponding hemispheric set is denoted LEBh1735
(comprising 1735 orientations) and the octant set is labeled
LEBo460.

Fig. 1 plots rms sampling moments rJ against J for three
schemes: ZCWh, ASGh, and LEBh. Overall, rJ decreases as
the number of orientations increases, which reflects the well-
known impetus for choosing a large set in order to obtain an
accurate estimate of the orientational average. The rank
profiles share the common feature of initially being rather
flat, after which a sharp peak appears, followed by a region
of overall high values of rJ. If the function to be integrated
has a J f

max falling within the flat region of a given rank pro-
file, the corresponding set of orientations provides a decent
estimate of the orientational average, which improves fur-
ther as the number of orientations increases.

However, only the Lebedev schemes cancel rJ, thereby
giving exact averages, provided that J S

max P J f
max. The rank

profile of the largest hemispheric Lebedev set (Jmax = 131)
is shown in Fig. 1H. However, in cases for which
J f

max > 131, insufficient accuracy of the orientational aver-
age may result. As outlined in the next section, we have
remedied this situation by developing a straightforward
expansion protocol to which any existing Lebedev set
may be subjected. The rank profile of such an expanded
Lebedev set is displayed in Fig. 1I: it is denoted
ROSELEBh17497 and resulted from the input set
LEBh1945, associated with Jmax = 107. The rank profile
of ROSELEBh17497 peaks at the very high rank J = 324.
This set does not cancel any sampling moment, which
implies that the ROSE schemes are strictly not belonging
to the GSQ category. Nevertheless, as all sampling
moments below the ‘‘peak’’ J < 324 are negligible, the loss
of integration accuracy is for all practical purposes insignif-
icant, as will be demonstrated below. Also, note that for
entations indicated in each plot, for the following schemes: ZCWh (A–C),
t r0 is by definition equal to 1 and is not displayed. The inset plots display
and 106 (I) relative that of the other graphs. Note the more than 1000-fold
se of ZCWh and ASGh.
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J < 324, the rms sampling moments of the ROSELEBh set
are several orders of magnitude smaller than the corre-
sponding values of ASGh and ZCWh.
3. Regularized octahedral symmetry expansion

The GSQ schemes of Lebedev and co-workers are derived
(semi)-analytically [28–33]. The problem of generating larg-
er ‘‘Lebedev sets’’ has also been addressed by numerical
techniques [24,34]. However, this task is challenging in terms
of computational time and memory if one only relies on
‘‘brute-force’’ numerical methods. While being straightfor-
ward to generate, our expanded Lebedev sets ROSELEB are
constructed so as to approximate the asymptotic behavior
of the exact Lebedev orientations as their number increases.
There are several degrees of freedom in this procedure: each

recursive step in the ROSE protocol presented here results in
a 9-fold enlargement of the input grid.

The Lebedev sets conform to the octahedral point group
with inversion G8

	 [28–33]. We have found that all existing
sets are not suitable for orientational averaging in NMR:
within this group count for example some members involv-
ing negative weights wj. In this work, we have only fed the
most uniform Lebedev sets through the ROSE procedure.
For such grids, all weights are positive and almost equal,
A

D E

B

Fig. 2. Illustration of the ROSE procedure. (A) The triangular arrangement of
are given by the orientations r1, r2, and r3, is used in the octahedral symmetry
(r123) and three pairs of points on each border. One such point r12 is labeled, an
creates nine new triangles, used subsequently as input to the regularization prot
sharing a grid point rj and used in the regularization procedure. One triangle la
between the octahedrally symmetry-expanded LEB50 set before (grey lines
ROSELEB434. (E) Comparison between the ROSELEB434 set (black lines) and
with the following relationship applying between Jmax

and NS
LEB:

NS
LEB ¼ 1

3
ðJ max þ 1Þ2 þ 2; J max ¼ f5; 11; 17; . . . ; 131g:

ð23Þ
For these grids, (Jmax + 1) is a multiple of six [32].

The ROSE procedure produces an expanded set associ-
ated with an ‘‘effective’’ J eff

max, while maintaining the origi-
nal Lebedev symmetry and relationship between J eff

max and
NS [Eq. (23)]. The notation J eff

max implies that all sampling
moments for ranks 1 6 J 6 J eff

max are negligibly small but

finite, as opposed to those of the exact LEB sets that cancel.
In Fig. 2A, the input set LEB50 (Jmax = 11) is used to
exemplify the ROSE procedure, leading to a set of orienta-
tions that closely mimics the existing LEB434 set with
Jmax = 35 shown in Fig. 2E. A collection of ROSELEB sets
are given in Table 1.

The remainder of this section outlines the two elements
of the expansion procedure, together combining into one

ROSE step that may be applied recursively.

3.1. Octahedral symmetry expansion

As a preparatory step, the input Lebedev orientations
are connected into a ‘‘triangulated grid,’’ where three near-
C

grid points for the (input) LEB50 set. (B) One such triangle, whose vertices
expansion to construct seven new points: one at the center of the triangle
d is calculated according to Eq. (25). The octahedral symmetry expansion

ocol. (C) Illustration of the six triangles (whose indices are comprised in vj)
belled Ti is shaded, with its center of gravity ri

123 marked. (D) Comparison
) and after applying regularization (black lines). The latter is denoted
the original ‘‘exact’’ LEB434 set (grey lines).



Table 1
The number of orientations NS of some representative ROSELEB grids: the
first column displays the size of the corresponding input LEB grid, with its
associated Jmax given within parenthesis

NS
LEBðJmaxÞ J eff

max NS (ROSELEB) NS (ROSELEBh) NS (ROSELEBo)

770(47) 143 6914 3457 901
974(53) 161 8750 4375 1135

1202(59) 179 10802 5401 1396
1454(65) 197 13070 6535 1684
2030(77) 233 18254 9127 2341
3074(95) 287 27650 13825 3529

4334(113) 341 38990 19495 4960
5810(131) 395 52274 26137 6634

The second column lists the J eff
max of the expanded sets. The corresponding

number of orientations of the full sphere, hemisphere and octant sets are
given in the third, fourth, and fifth columns, respectively.
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est-neighboring orientations constitute the vertices of one
triangle. One such set of triangles is illustrated in Fig. 2A
for the LEB50 grid. In the following, an orientation
{a,b} is expressed in the form [43]

rT ¼ ðrx; ry ; rzÞ ¼ ðsin b cos a; sin b sin a; cos bÞ; ð24Þ
where r is a column vector and T represents the transpose
operation.

The next step is to estimate the positions of additional
grid points. At the moment, we focus on one triangle,
depicted in Fig. 2B and defined by the three orientations
r1, r2, and r3. This is now triangulated further, by con-
structing six new points located on its borders, as marked
in Fig. 2B. One such point r12 is determined from r1 and
r2 using the relationships:

r12 ¼ r1 cosfh=3g þ ðr?=kr?kÞ sinfh=3g; ð25Þ
h ¼ arccosfrT

1 r2g; ð26Þ
r? ¼ r2 � r1 cos h: ð27Þ

Here r^ is a vector perpendicular to r1 and pointing to-
wards r2, and the length of a vector is calculated as
krk ¼

ffiffiffiffiffiffiffi
rTr
p

. The remaining five points on the triangle bor-
ders are constructed analogously by permuting the set of
vectors r1, r2, and r3. The center-point r123 of the triangle
(see Fig. 2B) is calculated as the normalized average of
its three surrounding corner points according to

r123 ¼ ðr1 þ r2 þ r3Þ=kr1 þ r2 þ r3k: ð28Þ
The procedure outlined above is repeated for all trian-

gles, resulting in a grid comprising 434 orientations. It is
illustrated by grey lines in Fig. 2D. Starting from an input
Lebedev set comprising N orientations, the octahedral
symmetry expansion inserts 8 (N � 2) additional grid
points and results in an expanded set involving (9N � 16)
orientations.

3.2. Regularization

A refined set of orientations is achieved by regularizing

the octahedral symmetry-expanded grid. Our regulariza-
tion is defined on the unit sphere surface and is completed
when each orientation is located at the center of gravity of
the area spanned by its nearest neighboring grid points.
Iterative regularization procedures are discussed further
in Ref. [49].

As the regularization operates on a triangulated grid of
orientations, it is consequently expressed as a set of trian-
gles {Ti}, where Ti is defined by its three vertices (orienta-
tions) ri

1, ri
2, and ri

3. One such triangle is shaded in Fig. 2C.
ri

123 represents its center of gravity (calculated by inserting
ri

1, ri
2, and ri

3 into Eq. (28)), whereas the triangle area Ai
123 is

given by [50]

Ai
123 ¼ 2 arctan

jðri
1Þ

Tðri
2 � ri

3Þj
1þ ðri

1Þ
T
ri

2 þ ðri
1Þ

T
ri

3 þ ðri
2Þ

T
ri

3

( )
: ð29Þ

The absolute value in the numerator accounts for permuta-
tions of the vertices and ri

2 � ri
3 represents the cross-product

between the vectors ri
2 and ri

3.
Next, we introduce a set {vj}, where the element vj com-

prises a list of all triangle indices having rj as vertex. There
are either four or six such triangles sharing an orientation.
Fig. 2C shows one such constellation where the point rj is
surrounded by six triangles. A refined orientation rreg

j is
now determined as the weighted sum over its neighboring
triangle center-points ri

123 and areas Ai
123:

rreg
j ¼

X
i2vj

ri
123Ai

123: ð30Þ

This procedure is repeated for all grid points rreg
j , after

which each orientation rj is updated as the normalized
vector

rj ¼
rreg

j

krreg
j k

; ð31Þ

leading to a refined set {rj}. The iterative procedure is
repeated until convergence is reached, i.e., when all orien-
tations rj remain stationary.

Finally, estimates of the positive and essentially equal
weights {wj} are obtained posteriori from the fractional
area (solid angle) associated with each orientation
rj ” {aj,bj} according to

wj ¼Nð2Þ 1

3

X
i2vj

Ai
123; ð32Þ

where Nð2Þ is given by Eq. (10) and the factor 1/3 takes
into account that the area Ai

123 is shared equally amongst
the vertices of Ti.

Fig. 2E shows a comparison between the existing
LEB434 grid and the set of 434 orientations obtained by
feeding LEB50 through the ROSE procedure. The differ-
ences between LEB434 and ROSELEB434 are almost not
discernible by eye. The improvement of the regularization
step alone is illustrated in (D). It follows that the ROSE
approach may be used to predict nearly optimal sets of ori-
entations for cases where the exact Lebedev solutions are
not yet existing. For instance, the currently largest Lebedev



B. Stevensson, M. Edén / Journal of Magnetic Resonance 181 (2006) 162–176 169
grid (Jmax = 131) gives rise to a ROSELEB52274 set with
J eff

max ¼ 395. However, a second application of ROSE
results in a grid of 470450 orientations ðJ eff

max ¼ 1187Þ.
4. Orientational averaging performance: satellite transitions

under MAS

The superiority of the Lebedev scheme compared to
other orientational averaging approaches was demonstrat-
ed for the calculation of spinning sideband manifolds from
dynamically inhomogeneous Hamiltonians [35] in the con-
text of chemical shift anisotropies in powdered samples
under MAS conditions [10]. However, in cases of substan-
tial anisotropic interactions, even the largest existing Lebe-
dev sets may be insufficient. It is then necessary to employ
the ROSELEB schemes. In this section, we compare their
performance with other orientational averaging methods
for simulating the spinning sideband manifolds generated
by the satellite-transitions of a single spin-3/2 in a powder
subjected to MAS. The result is a spectrum comprising a
set of narrow sidebands, with the sideband envelope width
and shape reflecting the size of the quadrupolar frequency
xQ and the asymmetry parameter g, respectively. Here

xQ=2p ¼ 3CQ

2Ið2I � 1Þ ; ð33Þ

where CQ = e2qQ/h is the quadrupolar coupling constant
[36] and I denotes the spin quantum number.

The number of spinning sidebands of significant ampli-
tude increases as the ratio xQ/xr increases—the higher the
ratio, the larger the number of sampled orientations
required to reach a converged ‘‘powder spectrum.’’ The
value of the asymmetry parameter also dictates the conver-
gence properties of a given orientational averaging scheme,
as exemplified below. As the number of significant side-
band amplitudes only depends on the ratio xQ/xr, we have
employed relatively small quadrupolar frequencies (around
100 � 160 kHz) in our examples, to ensure that second
order quadrupolar interactions [36] are negligible at high
magnetic fields and therefore may be omitted in the simu-
lations. Calculations involving second-order broadening
are presented in the next section.

As we deal with a single interaction, orientational aver-
aging is sufficient by sampling orientations over an octant.
From a set of NS orientations and weights of a given
scheme, we calculated the resulting sideband manifold
faðkÞS g. The accuracy of the calculated spectrum was
assessed by recording the maximum deviation in any
amplitude aðkÞS (scanned over all sideband indices k) from
the corresponding one aðkÞref in a converged ‘‘reference spec-
trum’’ [10]:

�S
max ¼ max

k
fjaðkÞS � aðkÞref jg: ð34Þ

The plot of �S
max against NS for a given method reflects its

orientational averaging performance and will be referred
to as its ‘‘convergence curve.’’
We evaluated convergence curves for the LEB sets, in
conjunction with its ROSE-expanded versions: throughout,
we employ the original octant Lebedev sets out to their cur-
rently largest grid-size of 760 (Jmax = 131) and then pursue
with the expanded ROSELEBo sets. For simplicity, the
‘‘combined’’ convergence curve involving both the Lebedev
and ROSELEB sets will be referred to as ‘‘LEBo’’: we will
comment the onset of the ROSELEBo sets whenever needed.
The convergence curves of LEBo are compared with those
obtained from the octant ASGo [1] and ZCWo [19–21]
schemes. These methods were selected as they have proven
to be very efficient for powder averaging in NMR [7,10,14],
and because arbitrarily large sets of orientations may easily
be generated. We have also included results using the full-
sphere ZCW sets, as in some cases they outperform their
octant counterparts.

Fig. 3 depicts the resulting convergence curves (left pan-
el) and the corresponding reference stick spectra (right pan-
el). Fig. 3A shows the case xQ/2p = 100 kHz, g = 0.3 and
xr/2p = 10 kHz (xQ/xr = 10). For this regime of relatively
low xQ/xr, reflected in a spectrum having 25 sidebands of
significant intensity, the Lebedev scheme significantly out-
performs all other methods. The dashed line in the left pan-
el indicates an error threshold value below which no visual
differences are discernible between the ‘‘essentially con-
verged’’ spectrum and the reference in the right panel of
Fig. 3. Here, as well as for other cases discussed below, this
amounts to an integration error of 0.5% of the largest spin-
ning sideband amplitude of the manifold. The LEBo
scheme reaches well below the threshold in 46 orientations
and an exact orientational average is obtained using 136
angles. ASG is the second best technique, but requires
1.7 times as many orientations to reach the threshold and
496 crystallites to reduce the error below 10% of the thresh-
old value.

Fig. 3B shows the corresponding curves for the same
xQ/xr ratio but for g = 1.0. Here as well, the ZCW meth-
ods are outperformed by the ASGo and LEBo schemes.
LEBo converges well within 64 orientations, while 120
ASGo angles are needed to achieve the same integration
accuracy. We have not yet encountered a case where any
other tested scheme outperforms the Lebedev method.
Additionally, LEB has the advantage of providing exact

orientational averages.
Fig. 3C displays convergence result for xQ/xr = 24 and

g = 0.5, resulting in a larger number of sidebands (�60).
Here, all schemes consequently require larger sets to con-
verge, but LEBo still performs better than the others. By
comparing the two ZCW schemes in (A–C), the very irreg-
ular performance of the ZCWo sets are obvious.

Finally, the results of a very challenging case are
shown in (D). Here xQ/2p = 162.5 kHz, g = 0.2 and
xr/2p = 2.5 kHz, amounting to xQ/xr = 65 and giving a
sideband manifold comprising �140 sidebands. Now all
methods require more than 500 orientations to reach a
region of near-convergence, and while the Lebedev
scheme reaches this region somewhat faster than the
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Fig. 3. Powder averaging convergence curves for MAS spectral sideband amplitudes generated by the first-order quadrupolar interaction of a single I =
3/2, using parameters as indicated in the right panel of (A–D), also showing the sideband amplitudes of the fully converged reference calculations. The
convergence curves of the various sampling schemes compared are identified by the legend in (D). Each dashed line in the right panel (at 5% of the
maximum sideband amplitude) indicates the maximum value of the vertical scale used in the corresponding convergence plot in the left panel. The central
peak whose amplitude mainly derives from the central-transition is truncated for easier visualization. The dashed lines in the left panel display an
orientational averaging ‘‘convergence threshold,’’ as discussed in the text. The asterisk in (D) marks the onset of the octahedrally symmetry-expanded
Lebedev sets, before (grey line; filled triangles) and after applying regularization (black line; open triangles).
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others, significant competition is provided by ZCWo.
Further, the largest existing Lebedev set (760 orientations)
fails to reach the convergence threshold and the complemen-
tary ROSELEB sets now become useful. The curve then forks
into two separate paths, one obtained by using the octahe-
dral symmetry expansion alone (grey line; filled triangles)
and the other resulting after also applying regularization,
i.e., the ROSELEB sets (black line; open triangles). The
marked improvement by using regularization is obvious,
and the ROSELEB scheme has converged using 901 orienta-
tions, which is faster than any other method. As discussed
above, the ROSELEB sets do not provide exact orientational
averages, but the errors introduced are in practice insignifi-
cant. This is evident from Fig. 3D, as the integration errors
generated by the ROSELEB sets consistently stay well below
the threshold value (upon convergence).



B. Stevensson, M. Edén / Journal of Magnetic Resonance 181 (2006) 162–176 171
5. ROSELEB grids combined with interpolation

The group of orientational averaging problems for
which both the spectral amplitudes and frequencies are ori-
entation dependent result in broad peakshapes, which may
span up to �1 kHz in the case of homonuclear dipolar-cou-
pling broadened peaks at rotational resonance [45,46], and
from tens to hundreds of kHz in cases of substantial anisot-
ropies in static samples. For these calculations, it is neces-
sary to use very large sets of orientations (103

[ NS
[ 105)

to avoid simulation artifacts showing up as ‘‘rippled’’ line-
shapes (e.g., see Fig. 9 of Ref. [18]). However, the use of
spectral interpolation techniques may greatly reduce the
number of sampled orientations, while the interpolation
procedure itself increases the computation time marginally,
in our implementations typically by <10%.

Here we employ the ASG interpolation scheme [1], which
requires ‘‘triangulated’’ grids of orientations, i.e., that each
grid point may be associated with two neighboring orienta-
tions, together making the vertices of a triangle. Naturally,
each point is shared between several triangles. The details of
the procedure is outlined in [1]. For successful implementa-
tion, the ASG interpolation protocol requires that the spin
Hamiltonian eigenvalues and eigenvectors associated with
each transition are readily distinguished and ordered identi-
cally for each triplet of angles employed. This is straightfor-
ward for the calculations considered here, for which the spin
Hamiltonian is diagonal. However, as discussed in Refs.
[1,17], some complications arise when dealing with time-de-
pendent non-diagonal Hamiltonians. The ASG interpola-
tion may in principle be adapted to these problems, but
we have not pursued such investigations.

The ‘‘triangulation’’ of the Lebedev sets discussed earlier
in the context of the ROSE protocol implies that they are
suitable for combination with ASG interpolation. As the
ROSE procedure itself builds on a triangulation process,
the ROSELEB sets are also well-adapted. However, we have
not found any obvious approach to interpolate the ZCW
sets.

To assess the performance of the interpolated ROSELEB
schemes, we calculated a set of NMR spectra generated
from a spin-3/2 in a powder, in this case including both first
and second order quadrupolar interactions. We compared
convergence curves obtained from (non-interpolated)
ZCW schemes with those of interpolated ASGh and
ROSELEBh sets as follows (for the latter using LEBh sets
whenever possible): first, a particular molecular frame M
was selected, where XPM represents the transformation
angles between the PAS of the quadrupolar tensor and
M [see Eq. (5)]. Then for a given set S of orientations
fXS

MRg, we evaluated its powder spectrum and calculated
the rms-deviation from a converged reference spectrum,
which itself by definition is independent of XPM, as follows:

�S
rmsðXPMÞ ¼

1

n

Xn

j¼1

aj
SðXPMÞ � aj

ref

� �2

 !1=2

: ð35Þ
Here aj
SðXPMÞ and aj

ref correspond to the jth spectral ampli-
tude obtained using set S and the reference set of orienta-
tions, respectively, while n is the total number of
amplitudes. Fifty such calculations were repeated, only
varying the XPM angles (selected from the three-angle
ZCW50 set of Ref. [21]) while keeping all other simulation
parameters constant. A merit of figure of the accuracy of
the orientational average obtained from the set S was
extracted as the largest rms-value of the set f�S

rmsðXPMÞg:

�S
max ¼ max

XPM

f�S
rmsðXPMÞg: ð36Þ

The plot of �S
max versus an increasing number of orienta-

tions defines the ‘‘convergence curve’’ of the corresponding
orientational averaging scheme. This procedure requires
using hemispheric sets and was chosen to emulate cases
where several non-coincident quadrupolar tensors may be
present, thereby precluding the choice XPM = {0,0,0}.
Such a convergence test therefore reflects the ‘‘worst-case’’
orientational averaging performance of a given sampling
scheme.

The resulting convergence curves are depicted in the left
panel of Fig. 4 for the cases of CQ/2p being equal to (A)
1.0 MHz, (B) 2.5 MHz and (C and D) 4.0 MHz with the
Larmor frequency set to x0/2p = � 105.9 MHz. A spin-
ning frequency of 50 kHz was used in (A–C), in order to
emulate the case of infinite spinning and ensuring that all
signal intensity is present in the central-transition center-
band. On the other hand, Fig. 4D employed a spinning
speed of 9.0 kHz to test an experimentally more realistic
case when spinning sidebands of both first and second
order quadrupolar interactions overlap with the center-
band (see the inset spectrum). The vertical scale of each
convergence plot is set so as to illustrate ‘‘poor’’ and ‘‘de-
cent’’ orientational averaging convergence around the top
and bottom portions of each figure, respectively. The right
panel shows the reference spectra, together with error func-
tions representing the deviations between the reference
spectrum and that obtained from a particular set of
orientations.

Here, Fig. 4 reveals no significant differences between
the two interpolated schemes: ROSELEBh is slightly better
than ASGh and converges roughly 15–20% faster. For all
cases, decent ‘‘convergence’’ is achieved in �7000 orienta-
tions, despite that the quadrupolar coupling increases in
(A–C) and thereby result in increasingly broadened peak-
shapes. The similar convergence is due to the application
of Gaussian broadening amounting to [1% of the cen-

tral-transition peak-width in each case. Increasing the
broadening further leads to faster convergence for all meth-
ods, and particularly so for the non-interpolated schemes,
while the relative convergence of ASG and ROSELEB
remain essentially unchanged. Our choice of a relatively
small broadening was for the sake of emphasizing the
different orientational averaging performance of the sam-
pling schemes, as well as on the impact of using interpola-
tion. It should be noted that use of extensive additional
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Fig. 4. Powder averaging convergence curves for the two interpolated hemispheric schemes ASGh and LEBh; the latter represent Lebedev orientations up
to the grid-size 2647, after which the expanded ROSELEBh sets are employed. These test cases involve second-order quadrupolar broadened central
transition peakshapes of spins—3/2, assuming a Larmor frequency x0/2p = �105.9 MHz, which is representative for 23Na at 9.4 T. The calculations
employed parameters as indicated in each plot, using a MAS frequency of 50 kHz in (A–C). In (D), both central and satellite transitions were detected. In
this case of a moderate spinning frequency (9 kHz) the sidebands of both the satellite and central transitions overlap (see inset in (D)). Difference (‘‘error’’)
spectra are shown beneath each reference spectrum in the right panel. They were obtained using either the ASGh1353 set (marked by asterisk in (A)) and
the ROSELEBh6535 set (triangle), and indicate the level of convergence around the upper and lower regions of each plot in the left panel, whose maximum
values of the vertical scale are arbitrarily set to 1.
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broadening amounts to a similar effect as spectral interpo-
lation, but also alters spectral features, as the sharp singu-
larities of the lineshapes are ‘‘smeared’’ out.

The convergence properties are displayed further in
Fig. 5, where log10f�S

maxg is plotted against log10 {NS}. Vast
differences between interpolated and non-interpolated tech-
niques are (not surprisingly) observed. Employing interpo-
lation for this type of problems makes substantial
differences [1,17], and whereas the ROSELEB scheme con-
verges slightly faster than ASG, the main simulation accel-
erator is the use of interpolation alone. We also mention
that similar calculations (not shown) using XPM =
{0,0,0}, thereby permitting averaging over an octant,
generally favored ROSELEBo, amounting to 25–30% faster
convergence compared to ASGo.
Our tests focussed on simulations of powder patterns
from fourth-rank tensors in the case of spins—3/2 under
MAS conditions [36]. However, these results are represen-
tative for spectral calculations of any half-integer quadru-
polar spin under MAS, and likely also to cases where
both second- and fourth-rank tensors contribute (e.g.,
quadrupolar spins in static powders) as well as to scenarios
where only second-rank tensors are involved, e.g., chemical
shift anisotropies and heteronuclear dipolar couplings in
static samples.

6. Numerical procedures

All spectral simulations were based on the COMPUTE
protocol [48], with the integration over c handled separate-
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Fig. 5. Same simulations as in Fig. 4, but showing log–log convergence
plots. The dashed boxes indicate the ranges employed in the plots of
Fig. 4. Note the large differences between interpolated (ASGh and LEBh)
and non-interpolated (ZCW and ZCWh) methods.
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ly using the methods in [11,12]. By dividing the rotational
period into a large number of segments n [48], we ensured
that negligible errors were introduced from the time inte-
gration of the Schrödinger equation. For example, in the
spinning sideband calculations of Fig. 3, n ranged between
256 and 2048. The simulations in Fig. 3 included only first
order quadrupolar interactions, whereas those in Figs. 4
and 5 incorporated both first and second order quadrupo-
lar interactions. For the latter, the spectral amplitudes out-
put from the COMPUTE calculation were sorted into bins
as discussed in detail in Ref. [51]. In Fig. 4, additional
Gaussian broadening of (A) 3.5 Hz, (B) 17 Hz and (C
and D) 70 Hz were employed, with the broadening always
exceeding the spectral resolution by at least an order of
magnitude. All cases used an initial density operatorbq ¼ bI x. The detection operator corresponded to bIþ in
Fig. 4D, whereas only the central-transition was observed
in (A–C) using the fictitious spin-1/2 operator bIþCT of the
central-transition subspace [52,53].

The error functions displayed in the right panel of Fig. 4
were calculated as the difference between the converged ref-
erence spectrum and that obtained using the Euler angle
triplet XPM giving the maximum error �S

max in Eq. (36), i.e.,

�j
S ¼ aj

SðXPMÞ � aj
ref ; j ¼ 1; 2; . . . n; ð37Þ

where j is the amplitude coordinate and n the total number
of amplitudes.

‘‘Exact’’ reference spectra were generated in Fig. 3A–C
using the LEBo760 set, whereas 3524578 ZCW orientations
were employed in (D) and in Figs. 4 and 5. The rank profile
calculations in Fig. 1 incorporated the procedure presented
in Appendix A. Only even-rank DJ

q0ða; bÞ functions needed
to be evaluated for these hemispheric sets [10].

7. Conclusions

The largest existing Lebedev set of orientations [28–33]
is insufficient for calculating orientational averages in
NMR if the anisotropic interactions are substantial. As
exact Lebedev solutions for larger grids cannot easily be
found, we have introduced the regularized octahedral
symmetry expansion (ROSE) protocol. This recursive pro-
cedure is straightforward to implement and generates new
near-optimal Lebedev orientations. Each ROSE-step leads
to a 9-fold enlargement of the input grid. For all practical
purposes, the new ROSELEB sets provide comparable inte-
gration accuracies as the ‘‘exact‘‘ GSQ methods.

The problem of orientational averaging in solid state
NMR may broadly be classified as follows: (i) only the
NMR spectral amplitudes depend on orientation and (ii)
both the amplitudes and frequencies are orientation depen-
dent. In the first case, Lebedev sets in conjunction with
their ROSE-expanded counterparts are superior to other
orientational averaging methods: to achieve a decent inte-
gration accuracy, the second best technique (ASG) typical-
ly requires 1.5 times as many orientations. If very high
accuracy is required, ROSELEB gives an order of magnitude
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reduced computation time. For the second category of
NMR powder simulations, typically very broad lineshapes
are obtained. For an important sub-group of these prob-
lems, namely when the spin Hamiltonian is diagonal, we
demonstrated in the context of isolated quadrupolar spins
undergoing MAS that ROSELEB sets in conjunction with
the interpolation protocol of Alderman, Solum, and Grant
gives faster convergence of the powder lineshapes than
using the original ASG orientational sampling scheme [1].
However, the gains are rather marginal, typically amount-
ing to 15–25% reduced computation time. We emphasize
the benefits of using spectral interpolation [1,17], as the inter-
polated ASG and ROSELEB schemes are superior to other
methods that cannot straightforwardly exploit interpola-
tion, such as ZCW [19–21] or REPULSION [7]. However,
currently the ASG interpolation procedure is problematic
to implement for cases where the spin Hamiltonian is non-di-
agonal: this applies, for instance, to calculations involving
homonuclear couplings. Improved interpolation strategies
would be valuable for this group of problems.

In summary, the ROSELEB schemes are very efficiently
dealing with broad classes of orientational averaging prob-
lems in solid state NMR, and arbitrarily large grids may be
obtained by using the expansion recursively. ROSELEB
grids together with data for implementing spectral interpo-
lation may be obtained from the authors [54]. These
schemes should be helpful to the users of current public
NMR simulation platforms, such as GAMMA [39], SIMP-
SON [17,40], BlochLib [41] and SPINEVOLUTION [42].
Further, the ROSE sets are expected to be beneficial for
many other applications where Lebedev sets are exploited,
for example in DFT-calculations [22–27].
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Appendix A

The real-valued reduced Wigner function dJ
qq0 ðbÞ may be

expressed analytically as [43]

dJ
qq0 ðbÞ ¼ ½ðJ þ qÞ!ðJ � qÞ!ðJ þ q0Þ!ðJ � q0Þ!�

1
2

�
X

k

ð�1Þk
ðcos b

2
Þ2J�2kþq�q0 ðsin b

2
Þ2k�qþq0

k!ðJ þ q� kÞ!ðJ � q0 � kÞ!ðq0 � qþ kÞ! : ð38Þ

Eq. (38) is straightforward to evaluate, but is prone to
accumulating numerical errors, which makes it difficult to
implement for high ranks (J J 100). For the calculations
in Fig. 1, we instead employed the procedure outlined be-
low, which appears to be numerically stable and at least
as efficient as using Eq. (38).

The reduced Wigner function dJ
qq0 ðbÞ is defined [43]

dJ
qq0 ðbÞ � hqj expf�ibbJ ygjq0i; ð39Þ
where bJ y is the y-angular momentum operator of a spin-J.
To avoid intermediate complex numerics of the real-valued
function dJ

qq0 ðbÞ (thereby saving computational time and
accuracy), we exploit the identity [55]bJ y � exp �i

p
2
bJ z

n obJ x exp i
p
2
bJ z

n o
: ð40Þ

Using well-known properties of exponential operators [55],
the combination of Eqs. (39) and (40) gives

dJ
qq0 ðbÞ ¼ hqj exp �i

p
2
bJ z

n o
expf�ibbJ xg

� exp i
p
2
bJ z

n o
jq0i: ð41Þ

The operator bJ x is diagonalized throughbJ x ¼ bX J
bJ z
bX T

J ; ð42Þ
where the operator bJ z is diagonal, and the columns in the
matrix representation of bX J corresponds to the eigenvec-
tors of bJ x. Since the operators bJ x and expf�ibbJ xg share
the same eigenvectors [56], Eq. (41) may be expressed

dJ
qq0 ðbÞ ¼

XJ

j;k;l;m¼�J

hqj exp �i
p
2
bJ z

n o
jjihjjbX J jki

� hkj expf�ibbJ zgjlihljbX T
J jmi

� hmj exp i
p
2
bJ z

n o
jq0i: ð43Þ

After exploiting that bJ z is diagonal, hqj expf�ibbJ zgjq0i
¼ expf�ibqgdq;q0 and the property hljbX T

J jmi ¼ hmjbX J jli,
the sum collapses into 2J + 1 terms:

dJ
qq0 ðbÞ ¼

XJ

k¼�J

hqj exp �i
p
2
bJ z

n o
jqihq0j exp i

p
2
bJ z

n o
jq0i

� hkj exp �ibbJ z

n o
jkihqjbX J jkihq0jbX J jki: ð44Þ

Since the reduced Wigner functions are real-valued, this
may be simplified further into

dJ
qq0 ðbÞ ¼

XJ

k¼�J

cos ðq0 � qÞ p
2
� bk

n o
hqjbX J jkihq0jbX J jki:

ð45Þ
It follows that by using Eq. (45), one may evaluate all
(2J + 1)2 functions dJ

qq0 ðbÞ through the diagonalization of
a real symmetric matrix of dimension (2J + 1) [Eq. (42)].
The diagonalization itself is computer-intensive, but needs
only be performed once if the resulting eigenvectors are
stored for future use.
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[27] S.T. Brown, L. Füsti-Molnár, J. Kong, Interpolation density values
on a cartesian grid: Improving the efficiency of Lebedev based
numerical integration in Kohn-Sham density functional algorithms,
Chem. Phys. Lett. 418 (2005) 486–491.

[28] V.I. Lebedev, Values of the nodes and weights of ninth to seventeenth
order gauss-markov quadrature formulae invariant under the octa-
hedron group with inversion, Zh. Vychisl. Mat. Mat. Fiz. 15 (1975)
48–54.

[29] V.I. Lebedev, Quadratures on a sphere, Zh. Vychisl. Mat. Fiz. 16
(1976) 293–306.

[30] V.I. Lebedev, Spherical quadrature formulas exact to orders 25–29,
Sibirsk. Mat. Zh. 18 (1977) 132–142.

[31] V.I. Lebedev, A.L. Skorokhodov, Quadrature formulas of orders 41,
47 and 53 for the sphere, Russian Acad. Sci. Dokl. Math. 45 (1992)
587–592.

[32] V.I. Lebedev, A quadrature formula for the sphere of 59th
algebraic order of accuracy, Russian Acad. Sci. Dokl. Math. 50
(1995) 283–286.

[33] V.I. Lebedev, D.N. Laikov, A quadrature formula for the sphere of
the 131st algebraic order of accuracy, Dokl. Math. 59 (1999) 477–
481.

[34] B. Delley, High order integration schemes on the unit sphere, J.
Comp. Chem. 17 (1996) 1152–1155.

[35] M.M. Maricq, J.S. Waugh, NMR in rotating solids, J. Chem. Phys.
70 (1979) 3300–3316.

[36] A. Jerschow, From nuclear structure to the quadrupolar NMR
interaction and high-resolution spectroscopy, Prog. NMR Spectrosc.
46 (2005) 63–78.

[37] K.E. Gates, M. Griffin, G.R. Hanson, K. Burrage, Computer
simulation of magnetic resonance spectra employing homotropy, J.
Magn. Reson. 135 (1998) 104–112.

[38] U. Haeberlen, High Resolution NMR in Solids. Selective Averaging,
Academic Press, New York, 1976.

[39] S.A. Smith, T.O. Levante, B.H. Meier, R.R. Ernst, Computer
simulations in magnetic resonance. An object-oriented programming
approach, J. Magn. Reson. A 106 (1994) 75–105.

[40] M. Bak, J.T. Rasmussen, N.C. Nielsen, SIMPSON: a general
simulation program for solid-state NMR spectroscopy, J. Magn.
Reson. 147 (2000) 296–330.

[41] W.B. Blanton, BlochLib: a fast NMR C++ tool kit, J. Magn. Reson.
162 (2003) 269–283.

[42] M. Veshtort, R.G. Griffin, SPINEVOLUTION: a powerful tool for
the simulation of solid and liquid state NMR experiments, J. Magn.
Reson. 178 (2006) 248–282.

[43] D.A Varshalovich, A.N Moskalev, V.K Khersonskii, Quantum
Theory of Angular Momentum, World Scientific, Singapore,
1988.

[44] M. Edén, Computer simulations in solid state NMR: I. Spin dynamics
theory, Concepts Magn. Reson. A 17 (2003) 117–154.

[45] M.G. Colombo, B.H. Meier, R.R. Ernst, Rotor-driven spin diffusion in
natural abundance 13C spin systems, Chem. Phys. Lett. 146 (1988) 189–
196.

[46] M.H. Levitt, D.P. Raleigh, F. Creuzet, R.G. Griffin, Theory and
simulations of homonuclear spin pair systems in rotating solids, J.
Chem. Phys. 90 (1990) 6347–6364.

[47] M.H. Levitt, Why do spinning sidebands have the same phase? J.
Magn. Reson. 82 (1989) 427–433.

[48] M. Edén, Y.K. Lee, M.H. Levitt, Efficient simulation of
periodic problems in NMR. Application to decoupling and
rotational resonance, J. Magn. Reson. A 120 (1996) 56–
71.

[49] A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, Springer,
New York, 2000.

[50] A. van Osterom, J. Strackee, The solid angle of a plane triangle, IEEE
Trans. Biomed. Eng. 30 (1983) 125–126.

[51] M. Edén, Computer simulations in solid state NMR: II. Implemen-
tations for static and rotating samples, Concepts Magn. Reson. A 18
(2003) 1–23.



176 B. Stevensson, M. Edén / Journal of Magnetic Resonance 181 (2006) 162–176
[52] A. Wokaun, R.R. Ernst, Selective excitation and detection in
multilevel spin systems: application of single transition operators, J.
Chem. Phys. 67 (1977) 1752–1758.

[53] S. Vega, Fictitious spin 1/2 operator formalism for multiple
quantum NMR, J. Chem. Phys. 68 (1978) 5518–5527.
[54] http://www.fos.su.se/~mattias.
[55] M.H Levitt, Spin Dynamics. Basics of Nuclear Magnetic Resonance,

Wiley, Chichester, 2001.
[56] J.J Sakurai, Modern Quantum Mechanics, Addison-Wesley, New

York, 1994.

http://www.fos.su.se/~mattias

	Efficient orientational averaging by the extension of Lebedev grids via regularized octahedral symmetry expansion
	Introduction
	Principles of orientational averaging
	Orientational dependence of the NMR signal
	The orientational average
	Orientational symmetry
	Gaussian spherical quadrature
	General principles
	Sampling moments and rank profiles


	Regularized octahedral symmetry expansion
	Octahedral symmetry expansion
	Regularization

	Orientational averaging performance: satellite transitions under MAS
	ROSELEB grids combined with interpolation
	Numerical procedures
	Conclusions
	Acknowledgments
	Appendix A
	References


